MULTI-TENANT LARAVEL IN PRODUCTION

Samuel Stancl
samuel@archte.ch
Founder, ArchTech

CONTENTS

1. INEFOAUCEION .ottt bttt 4
1.1, TErMINOLOZY FECAP .eveueuiuieteuirteiieeeiert ettt ettt ettt ettt ettt b et b et bt et e st eseneenen 4
1.2. Multi-tenancy vs Multi-INSTANCeccevvvieiriiieiniiiinccece e 5

2. HOW the package WOTKScccouciriiiriiiieceec ettt 6
ol TREMETT S oronmonmonooonm00oa00m000000000000000006I00300030003005a000000a000a003a00a000a00ACCa000a00aA0A0C0A000A0000CCA000a005AC0A0C0G0000CC 6

2.1.1. Default Tenant Modelcccceiiviniiiiiiiiiiniicccete e 6
2.1.2. Configuring the Modelcocceiiiniriiiiiiiincciicccce e 9
2.2. Tenant identifiCationcccovrieiririeiierininiecerc ettt ettt 9
2.2.1. MIAAIEBWALE ...ttt 10
2.2.2. RESOIVETS ..ottt 11
2.2.3. UNIVErsal FOULESccooveviuiiriiiiiiiiiiciciiccte ettt 11
2.2.4. Barly identifiCationcoeeoireenirieiiniecie ettt 11
2.3. Tenancy initialiZationc.ccceoeuerieiniic ettt 12
2.3.1. TeNanCy DOOLSLIAPPELScceveuiruiuirieiirieiirieiertetteet ettt ene st sne e enenea 13
2.4. Creating tENANTS ...ccccevuiiiiiiicieee e 13
2.4.1. TenancySerVICEPTOVIART ...c..c.cceviiuiririiirieerieieietertces ettt 14
2.5, SUIMIMATY oottt et saa e sae e st et e s aeesbaeesatesaaeesaaeesanesaneesnsees 14

3. Picking the right setup for your applicationcccoeeeireinnernecneereere e 16
3.1. Single-database vs multi-databaseccccccceeriiuiinininieinininiciccccc s 16
3.2. Tenant identifiCationc.cocoieiieiriiiiiiiece e 16

3.2.1. Domain/subdomain identificationc.ceccoreerreceneenneerncerceseeeseeeenenes 17
3.2.2. Path identificationccccoviiiiiiiniiiiiiincc e 17
3.2.3. Header identifiCationccoeeueiviniiiiiiininieiiiiicieiinteeceeetsee et 18
S BT 17 coormprrreosoreo oo e O O o PP T P XSO T OO PO Or IO 19

4. General tips and best PractiCcesc.cccovevriiriiiiniicincrieeee s 21
4.1. Using a single central dOmainccoueevieieinieinneiniiceecee et 21
4.2. Structuring your application to separate tenant and central applicationccc.c...... 21
4.3. Branding CONSIAErationsc.coeoeeueerieerieeniecrieereese sttt ettt et ssenen 22

5. SECUTTLY woueniiiiiieietetet ettt ettt et b et b s bbbt b ettt b et et et b e sb et enes 23
5.1, TENANT KEYS ..vvviiiiiiiiricicicicttinetetc ittt ettt bttt sttt ee 23
5.2 FIONEENM ..ttt 23

5.2.1. Sharing the tenant KeYc..cccoeoviiriiiniiicccceee e 23
5.2.2. Tenant-specific APT KEYSccccveueririeerinieinieieineeieteeeeeeese et 23
5.3. Filesystem, path enUMErationcc.cccceeirreiiniiennc et 24
5.4, DAtADASEcueuiiiiiiiiieic ettt ettt sttt 24
5.4.1. AUthentiCationcccoecieiiiiriiiriiiieiec s 26
5.5. SESSION SCOPIIE ..everveuriuiiiiriiniiiiiiiiieiest ettt a et sa ettt s b e s b bt sae b saesn e b ne 27

6. Deploying: multi-database migrationscocevevirirereniiinineneeeeser e 29
6.1. A short dive into zero-downtime deploymentsc.coccceeuvueueirniiievininincenineeieeeeenn 29
6.2. Multi-database Migrationsc.cccccceceviririiieuiinininiiicciieet et 29
6.3. Parallel MIGrationscccoeeieuiiirieiirece ettt 31
6.4. Tenant-specific maintenance MOdec.ccecvvueiriiiniiniiinieeeee e 31
6.5. Make your application usable even before the database has been migrated 32
6.6. Distributing tenants aCroSS SEIVETSccceeerueueruruereriereriererieresessesertesesessesessesessesessesesessenens 32
6.7. Differentiating between simple and complex migrationsc..ccceceeveerenerencrieenenennens 88
6.8. Separating high-availability code into a separate appcccceeeveerennieneieneenceesienens 33

7. Deploying: HTTPS CEItifiCatescooeuivirmirieuiiririnieieieiinieieietestetereieest sttt sesesesens 35

T L. CLOUALLATE ettt ettt ee et e eeeeeeeeesaeeseeaaeesansaesaanetesennaeesanssessnssaesannaessnnsteesnnseesanns 35

7.2 NEITIX ottt ettt et b ettt b bbbt a e e b e e b et et e bt e st e b et et et eseebe e b et et e st enennen 35
7.3 PLOT vttt ettt sttt et ettt e a et et e a e e st et et e et e e aten e et e ete e st et e ntenseeneenaensn 36
Tk, CAAAY covoooevoeeeeeeeeeee e 38
7.4.1. Reverse proxy 0N another SEIVETcocceveoereiinicinieninicieeeereeeseeseeesee e 38

7.4.2. Using Caddy as @ WEDSEIVETccceuvuriiuiuiiiinininiiieieieiiinieieeeeetssneseseseeessenenenen 39

7.4.3. Using Caddy as a reverse proxy on the same Serverccoceveveueceniniererccrennennes 39

7.4.4. Running Caddy in DOCKETc.cccceviririiieuiirininiiieicctininiereiettntse ettt seseneseseenenes 40

7.5, SUITLIMIATY .oviiuiiiniiiniiiiiiniieiiite ittt sat bbb et sab e sat e sbeesasesa s e b e e st s easesabesatesaeesbeeaasenneentesnnesns 41
8. Integrating with third-party packagesccccceiveiiiinininnineeee e 42
8.1, TENANTCONIIE vttt ettt bttt et nae e saenes 42
8.2. SINGleton DINAINGS ...c.eueviiueieieiirieiciricet ettt 42
8.3. Early identifiCationcocereeririeieie ettt 43
8.4. Route cloning with path identificationc.ccccccoeevnrieciinnniieirncccecees 43
8.5. Adding Tenancy to an existing applicationcecceecerueveneineiineineenceeeeeeenes 43

9. Common features and Pitfallscccooevieiiririninieeeeee e 45
9.1. Identifying tenants using users & SSO-style authenticationc.cccccvecciniriinnnenene. 45
9.2. Distributing tenant databases across multiple SEIVerscccoveveevirinnieierccrennnrenenene. 46
9.3. Different features Per tENANTcccovirirueueuiiiirinirieteeceeee ettt 46
9.4. Code CUSEOMIZATIONS ...euvveuirinieiiieieieieietei ettt ettt sa et n et ne e sne st 47
9.5. The definitive guide to tenant-specific files and assetsccceververrererrenenienenerennene. 48
DSl ITONMYEEE BRI acoomonmonmoonmoneiinmonao0mc0oi0a00ea00a000a00a000a00aa00aa00A000A00AI000000a000a00RA0000CCa000a0000CE 48

9.5.2. Fil@ @SSLScuruiiiiiiiiiiciciiicietectte ettt 49

9.6. Accessing data from multiple tenant databases ..., 49
9.6.1. Aggregating data manually ..o 49

9.6.2. Cross-database QUETIESccceeeerueerieueirieiriciteeeeee ettt 50

9.6.3. RESOUICE SYIICING ...cveiviriieiiiiiiiiitiiteieitetestestet sttt sre sttt sbesa et sbesa e ebe e 10)

9.6.4. Rethinking your database architectureccoceecevniiinncinninininccncce, 50

9.7. Tenant-specific logic executed in @ CLI CONEEXEoveveuiiririiveriiririiieiciiiererceceseeneveeneans 51
10. DEEP QIVES .ottt b et ene 52
10.1. Persistent PDO CONNECHIONSccccuvuiriiiiiiniiiiiiiiiiiieieiniesiene et enesaens 52
10.2. A very low level dive into S€SSI0N SCOPINGevvevruirierierieiriinienieieeeieseteeee et eneeaens 53
10.2.1. What causes the “unauthenticated”ccccocveverernernennerncrrceeeseeeeeenes 58

10.3. JODPIPEIINIE ..ttt ettt ettt sttt s s b et et e s s b et e e esenseneene 60

11. When to use specialized fEAtUIEScceoureririeiireirerere e 61
11.1. When tO US€ reSOUICE SYNCINGevrueuiriiiriiiiieiiiinieiteiirte ettt sse s sneesnenees 61
11.2. When to use PostgreSQL RLSc.ccviiriiiniiiieicieeeeieteieenretree e 62

12, CONCIUSION ..ttt 63

1. INTRODUCTION

In this book, I’ll dive into everything I’ve learned about building and running multi-tenant
Laravel applications from the years of developing Tenancy for Laravel, our SaaS boilerplate,
consulting with clients using the package in production, and more.

This book will cover creating multi-tenant applications in Laravel from a real-world, practical
point of view.

As the name implies, it’s focused on the challenges you may face running a multi-tenant appli-
cation in production. That said, the book also goes into a lot of depth about how the package
works in the first place, what multi-tenancy setup will work best for your use case, and how to
structure your application.

In other words, you should find plenty of valuable info here regardless of whether you’re just
getting started with your app or if you’re already running an application in production.

Let’s put this book into context, compared to the other resources available for the package.

The package documentation serves as a simple introduction and technical reference for using
the package.

The sponsor docs serve as a collection of directly usable things that you can use in your appli-
cation in a pretty much drop-in way.

This book aims to go over the real-world considerations of building a production multi-tenant
application.

Some chapters will give direct solutions to common issues/features. Other chapters will explain
all the nuances to consider and show how I’d go about solving a particular problem. Seeing
my thinking should give you a helpful reference for how to think about building multi-tenant
applications.

This book has no required reading order - besides the 2. How the package works chapter being
strongly recommended to read in full to get a proper understanding of how the package works
under the hood, if you’re not completely familiar with that. With all of the other chapters, you
can feel free to jump to whatever interests you most.

1.1. TERMINOLOGY RECAP
This book will use the following terms with very specific meanings, so it’s good to be familiar
with them.

Tenant identification refers to identifying a tenant from a request using an identification
middleware.

Tenancy initialization refers to initializing tenancy for a given tenant (= setting the tenant as
the current tenant and generally using tenancy bootstrappers to make the application tenant-
aware).

Automatic mode refers to running bootstrappers upon tenancy initialization to make the appli-
cation tenant-aware.

Manual mode refers to not using bootstrappers upon tenancy initialization. Note that this is
just a technicality and we don’t really cover it in this book since few people use that setup. The

4

point is that you can use it, and it’s good to know that identification and initialization can be
decoupled, as well as the terminology we use for this.

Tenancy bootstrappers are classes that scope the application for a given tenant. Think setting
cache key prefixes, changing the default database connection, adjusting filesystem paths, etc.
These classes essentially transition the application in and out of a specific tenant’s context.

Tenants are instances of your configured tenant model (see 2.1. Tenants).

Tenant key is the unique identifier of a tenant - like a primary key, but used for the purposes
of the package. In other words, you may use a different column than the primary key (though
it’s typically the same column) for your tenant key and the package will use exclusively that
column when querying tenants.

Route action refers to the function that gets executed to process a request for a given route.
Generally a controller method.

Central app refers to the part of the application that’s central - no bootstrappers used, no tenant
identification middleware used.

Tenant app refers to the part of the application that’s in the tenant context. Typically the bulk
of the application logic is in the tenant app.

1.2. MULTI-TENANCY VS MULTI-INSTANCE

Multi-tenant applications differ from multi-instance applications in that you only need a single
deployment of the application to serve multiple tenants.

A multi-instance setup would be one where you have the application deployed separately for
each client.

The massive advantage of multi-tenancy is that you only need to maintain a single deployment.
This saves you from enormous infrastructure complexity at the cost of some application
complexity.

That said, our package was specifically written with minimizing application complexity in
mind - that’s its entire purpose. The goal of the package is for it to be relatively easy to add it
to an existing application without any large scale code changes.

That way, you get the lowest possible infrastructure complexity and very low application-level
complexity at the same time.

2. HOW THE PACKAGE WORKS

This section will explain what exactly happens when a request comes in and tenancy is
initialized.

Before we get to that though, let’s first clarify what exactly tenants are.

2.1. TENANTS

Tenants are relatively simple models stored in the central database. Any model that implements
the Stanc1\Tenancy\Contracts\Tenant interface can be used as a tenant:

interface Tenant

{

/** Get the name of the key used for identifying the tenant. */
public function getTenantKeyName(): string;

/*% Get the value of the key used for identifying the tenant. */
public function getTenantKey(): int|string;

/** Get the value of an internal key. */
public function getInternal(string $key): mixed;

/** Set the value of an internal key. */
public function setInternal(string $key, mixed $value): static;

3

Here’s what the methods do:

getTenantKeyName() and getTenantKey() are a bit like getRouteKey() and
getRouteKeyName ()'. Route keys are used for finding models based on route parameters.
Similarly, tenant keys are used for finding tenants from any code in our package. The reason for
having an extra key is so that you can use any columns for primary keys? and route keys, without
tenancy-related logic affecting either one.

getInternal() and setInternal() are used for storing “internal” properties on the tenant.
For instance, the package may need to store db_name after a tenant database is created. There’s
no pre-defined list of these properties, and we reserve the right to add more of them in the
future, so we use this special abstraction for storing them instead of requiring that you have
a column for each one. The default Stancl\Tenancy\Database\Models\Tenant base model
uses a JSON column for this.

2.1.1. DEFAULT TENANT MODEL

Aside from the interface, the package also ships with a base model that implements the interface
as well as many convenient quality-of-life features.

Odds are, your tenant model extends this base model - that’s the recommended way of getting
started with the package, documented for instance in the quickstart guide.

'See I1luminate\Database\Eloquent\Model: : getRouteKey ()
*Similarly to route keys, primary keys use getKeyName () and getKey () methods. This means that with
route keys and tenant keys added, there are 3 types of unique keys you can use in your models.

6

https://laravel.com/api/master/Illuminate/Database/Eloquent/Model.html#method_getRouteKey

Speaking of the quickstart guide, let’s take a look at how the tenant model is defined there:

namespace App\Models;

use Stancl\Tenancy\Database\Models\Tenant as BaseTenant;
use Stancl\Tenancy\Contracts\TenantWithDatabase;
use Stancl\Tenancy\Database\Concerns\HasDatabase;
use Stancl\Tenancy\Database\Concerns\HasDomains;

class Tenant extends BaseTenant implements TenantWithDatabase

{

use HasDatabase, HasDomains;

3

We can see that the model is extending the base Tenant model -
Stancl\Tenancy\Database\Models\Tenant - and implementing the TenantWithDatabase
interface. It also uses the HasDatabase and HasDomains traits.

Let’s take a look at the interface first:

interface TenantWithDatabase extends Tenant

{
/*% Get the tenant's database config. */
public function database(): DatabaseConfig;

3

This interface extends the original Tenant interface and tells the package that we want to
use multi-database tenancy. The database () method is used by the package to configure the
tenant’s database connection.

The reason why this is a separate interface is that the package supports both single-database
and multi-database tenancy. Therefore the base Tenant interface, as well as the base Tenant
model, are unopinionated with regards to which tenancy setup you’re using.

Now let’s take a look at the traits:

trait HasDatabase

{
use HasInternalKeys;
public function database(): DatabaseConfig
{
/**% @uar TenantWithDatabase&Model Sthis */
SdatabaseConfig = [];
// ...
return new DatabaseConfig($this, $databaseConfig);
3
3

This trait is the counterpart to the TenantWithDatabase interface. It provides a default
database () implementation that depends on the default implementation of the internal keys
logic.

And the HasDomains trait:

trait HasDomains

{

public function domains()

{

return $this->hasMany(config('tenancy.models.domain'),
Tenancy: : tenantKeyColumn()) ;

3
public function createDomain($data): Domain
{
Sclass = config('tenancy.models.domain') ;
if (! is_array(Sdata)) {
Sdata = ['domain' => $data];
3
Sdomain = (new $class)->fill(Sdata);
Sdomain->tenant () ->associate($this) ;
Sdomain->save() ;
return S$domain;
3

This simply defines the domains () relationship, as well as a convenient method for creating
domains for tenants that can be called as:

Stenant->createDomain ([
'domain' => 'example.com',
'is primary' => true,
'foo' => 'bar',

DR

// or

Stenant->createDomain('example.com') ;

Notice that the HasDomains trait doesn’t have a counterpart interface. The reason for this is
that there are more ways to work with domains than just having a domains () : HasMany rela-
tionship, and the package calls this method in only very few places. Therefore, to give you more
flexibility with how you define domains for your tenant, it doesn’t require a specific interface.

Now that we’ve covered what we’re adding to the base Tenant model in our
App\Models\Tenant model, let’s take a look at the base model itself:®

class Tenant extends Model implements Contracts\Tenant
{
use VirtualColumn,

Concerns\CentralConnection,
Concerns\GeneratesIds,
Concerns\HasInternalKeys,
Concerns\TenantRun,
Concerns\InitializationHelpers,
Concerns\InvalidatesResolverCache;

protected static S$SmodelsShouldPreventAccessingMissingAttributes = false;
protected S$guarded = [];

public function getTenantKeyName(): string

{

*The code below is a bit simplified - some methods and docblocks have been stripped out for brevity.

8

return 'id';

b
public function getTenantKey(): int|string
{
return Sthis->getAttribute($Sthis->getTenantKeyName()) ;
3

3

You can see that this class implements the getTenantKey () /getTenantKeyName () methods.

It also uses the following traits:

e VirtualColumn®: thistraitlets you set any property on a model, even if the respective column
doesn’t exist. When that happens, the property is stored in a JSON column (data in this case),

e CentralConnection: this trait forces the model to use the central connection connection, so
that we can interact with it even when the default connection is set to a tenant connection,

» GeneratesIds: this trait generates UUIDs for the tenant’s id column?®,

« HasInternalKeys: this trait provides the getInternal () and setInternal () methods for
storing internal properties on the tenant. It essentially just prefixes the keys with tenancy
and stores them in the data column using the VirtualColumn logic,

e TenantRun: this trait provides the run () method for running code as the tenant. It’s a helpful
method for running something within a specific tenant’s context, with a guarantee that it
will revert to the previous context (which can be the central context or another tenant),

e InitializationHelpers: this trait provides the S$tenant->enter() and Stenant-
>leave () methods. These methods are just aliases for methods on the Tenancy singleton,

e InvalidatesResolverCache: this trait invalidates the resolver cache when the tenant is
saved. Resolvers are used by identification middleware.

2.1.2. CONFIGURING THE MODEL

The last step to making the package use our tenant model is to set the tenancy.models. tenant
config key to the fully qualified class name of our tenant model:

// config/tenancy.php
return [
'models' => [
'tenant' => App\Models\Tenant::class,
1,
1;

In summary, tenants are models stored in the central database that must
implement methods defined by the Tenant interface. For the package to use our
model, we must configure it as the tenant model in tenancy.models.tenant.

2.2. TENANT IDENTIFICATION

Now that it’s clear what tenants are, let’s talk about how they’re identified, or even more
generally: what tenant identification is.

*https://github.com/archtechx/virtualcolumn
*For more information about why we use UUIDs instead of regular autoincrement ids, see the 5.1. Tenant keys
chapter.

https://github.com/archtechx/virtualcolumn

Tenant identification is the first step of the tenancy logic that takes place when a request comes
in. It’s essentially the process of figuring out which tenant the request is for - if any. This logic
is generally done using middleware.

2.2.1. MIDDLEWARE

The package comes with a few middleware that can be used for tenant identification:

e InitializeTenancyByDomain: identifies tenants using the domain the request is being
made on,

e InitializeTenancyBySubdomain: identifies tenants using the subdomain the request is
being made on,

e InitializeTenancyByDomainOrSubdomain: identifies tenants using the domain or subdo-
main the request is being made on,

e InitializeTenancyByPath: identifies tenants using a route parameter ({tenant} in the
route definition),

e InitializeTenancyByRequestData: identifies tenants using request data (headers, query
parameters, cookies, etc.),

e InitializeTenancyByOriginHeader: identifies tenants using the Origin header.

We expand on these in depth in the 3. Picking the right setup for your application section.

Note that these middleware are just the ones that come with the package. You can easily create
your own middleware for tenant identification if you need any custom logic.

There’s some amount of complexity in these first-party middleware, but that’s mostly to work
well with our other abstractions like resolvers (see the next section), onFail logic, universal
routes, and early identification®. But if you wanted to write an identification middleware out
of the box, it’d essentially be:

namespace App\Http\Middleware;

class MyInitializeTenancyByDomain

{

public function handle($request, $next)

{

S$domain = Srequest->getHost() ;

if (Sdomain = Domain::where('domain', S$domain)->first()) {
tenancy()->initialize($Sdomain->tenant) ;

} else {
Sthis->onFail() ;

3

return S$next(Srequest) ;

3

protected function onFail()

{
abort (404) ;

®onFail logic refers to the behavior that should take place when the tenant cannot be identified using the
middleware, as shown in the code example above. In all first-party middleware this behavior is configurable
using static properties. Universal routes are routes that are accessible both in the tenant context and the central
context - see the next section for an explanation. Early identification refers to executing the middleware before
the controller constructor is executed, also explained in an upcoming section.

10

2.2.2. RESOLVERS

Resolvers are an abstraction used in the identification middleware.

They accept data in some simpler form - for instance the domain identification middleware
extracts the domain from the Request instance and passes it to the resolver as a string - and
return a tenant.

There are a few reasons for resolvers being a separate abstraction:

1. Simplifying the middleware.

2. Reusing logic - different middleware may use the same resolver.

3. Cached lookup - resolvers can cache the Tenant instance for the data they were given, so
that we can avoid making a query to the central database at the start of each request. Keep
in mind that queries are fast, but establishing connections can be slightly slow (with some
variations depending on your database setup and php-fpm configuration’), so it’s wise to
avoid doing so when possible.

4. Cache invalidation - The caching logic being moved to resolvers is also helpful for invali-
dation since it allows us to invalidate the cache for every resolver® whenever there’s a change
made to a tenant.

When writing custom identification middleware, it’s ideal to use a resolver for the reasons
mentioned above. Whenever possible, you should use an existing resolver to save yourself the
trouble of writing one from scratch.

2.2.3. UNIVERSAL ROUTES

Universal routes refers to routes that are accessible in both the central context and the tenant
context. Since the addition of early identification in version 4, the implementation has become
more complex, but the best way to understand universal routes is to think about them the way
they were implemented in v3: the $onFail being just return $next ($request) - if we fail at
identifying a tenant, we just carry on with the request execution, without running any tenancy
logic.

2.2.4. EARLY IDENTIFICATION

Early identification refers to running the tenancy middleware before controller constructors are
executed.

That may be an accurate description of what early identification is, but it doesn’t actually tell
us much, so let’s try another way.

In Laravel, there are two middleware stacks:

1. the route middleware stack - specific to a given route,

2. the kernel/global middleware stack - runs on all routes, and much sooner than route
middleware.

"See 10.1. Persistent PDO connections
*Resolvers are registered in the tenancy . php config

11

Normally you place the tenancy middleware in the route middleware stack, for example in
routes/tenant.php:

Route: :middleware ([
'web',
Middleware\InitializeTenancyByDomain: :class,
Middleware\PreventAccessFromUnwantedDomains: :class,
Middleware\ScopeSessions::class,

1)->group (function () {
Route::get('/', function () {

return 'Current tenant: ' . tenant('id') . "\n";

ks

})s

However, this can cause issues if you have a controller that injects dependencies in its
constructor’.

For instance, if you injected a class called OpenAIClient and wanted to use the tenant’s
OpenAlI keys that you set as the services.openai config once tenancy is initialized, it would
be still using your central OpenAlI keys since the dependency got injected before tenancy got
initialized.

The reason for this is that Laravel allows’ configuring middleware in the controller constructor,
which means that the constructor has to get executed before the route middleware.

Note that there are various ways to get around this, the best one being to just inject dependen-
cies in route actions (= controller methods) if possible.

That said, there are cases where you will need early identification - in the form of running
tenancy middleware in the global middleware stack - and Tenancy v4 implements that in a
convenient way. You put your identification middleware in the kernel stack and then use these
“flag” middleware (tenant, central, universal) to indicate whether a route should be run
in the tenant context, the central context, or either one.

This is covered in a lot of depth in our documentation, so you should go read that page to
properly understand early identification.

2.3. TENANCY INITIALIZATION

We’ve already hinted at this in the previous section. Tenancy initialization is the step where
we transition the application to the tenant context.

In the custom middleware above - MyInitializeTenancyByDomain - the middleware does
two things:

1. Tenant identification (finding a Tenant using a Domain based on $request->getHost ())
2. Tenancy initialization (calling tenancy()->initialize ($domain->tenant))

The initialize() method is how we enter a tenant’s context. Its counterpart is tenancy () -
>end () which switches back to the central context.

Under the hood, these two methods call the tenancy bootstrappers.

°It’s actually a bit more complex than that since Laravel has taken steps to improve the situation, so now
this only applies to controllers that are an instance of I11luminate\Routing\Controller and do not
implement T11luminate\Routing\Controllers/HasMiddleware. This is covered in a lot of depth
and with good visualizations on our documentation page about early identification.

12

2.3.1. TENANCY BOOTSTRAPPERS

A tenancy bootstrapper is a class that transitions the application’s context to that of a given
tenant. It’s a class that implements the TenancyBootstrapper interface:

interface TenancyBootstrapper

{

public function bootstrap(Tenant S$tenant): void;

public function revert(): void;

3

The tenancy()->initialize () method essentially loops over all registered bootstrappers and
calls their bootstrap () method with the tenant as an argument.

The tenancy () ->end () method does the same, but calls the revert () method.

Bootstrappers should be fully reversible, meaning that the state of the application after calling
revert () should be the same as it was before bootstrap () was called.

2.4. CREATING TENANTS

The package is configured in two main ways - simple configuration goes into
the config/tenancy.php file, while more dynamic things are configured in the
TenancyServiceProvider. That’s also where the process of creating a tenant is configured:

// app/Providers/TenancyServiceProvider.php
class TenancyServiceProvider extends ServiceProvider
{
public function events()
{
return [
// Tenant events
Events\CreatingTenant::class => [],
Events\TenantCreated::class => [
JobPipeline: :make ([
Jobs\CreateDatabase: :class,
Jobs\MigrateDatabase::class,
// Jobs\SeedDatabase: :class,
// Jobs\CreateStorageSymlinks::class,

// Your own jobs to prepare the tenant.
// Provision API keys, create S3 buckets, anything you want!
])->send (function (Events\TenantCreated Sevent) {
return Sevent->tenant;
})->shouldBeQueued(false), // ~false~ by default, but you likely
want to make this “true> in production.

// Listeners\CreateTenantStorage::class,

1,

13

You can see that by default, we enable the CreateDatabase and MigrateDatabase jobs. The
JobPipeline is our own abstraction for chaining jobs into event listeners that are optionally
queuable.

This means that if you wanted to also seed the tenant database upon tenant creation, you could
just uncomment the SeedDatabase line. And you can add any custom jobs here.

2.4.1. TENANCYSERVICEPROVIDER

This events () method is also where events related to initializing tenancy are configured:

Events\TenancyInitialized::class => [
Listeners\BootstrapTenancy::class,

Ie
Events\TenancyEnded::class => [
Listeners\RevertToCentralContext::class,

1,

Tenancy doesn’t run bootstrappers directly, it simply dispatches a TenancyInitialized event
when tenancy()->initialize() is called. The BootstrapTenancy listener configured here
is what actually calls the bootstrappers. And similarly, TenancyEnded is dispatched when
tenancy () ->end() is called, and RevertToCentralContext calls revert () in the configured
bootstrappers®.

This is what we refer to as the event-based architecture of the package. Since multi-tenancy is
a complex problem that may need to be addressed differently in each application, we make the
package as configurable as possible - using the config file, various static properties across the
codebase, and event listeners.

2.5. SUMMARY

In summary, tenants are models stored in the central database that must
implement methods defined in the Tenant interface. Tenant identification is
the process of figuring out which tenant the request is for, and it’s generally
done using middleware. Tenancy initialization is the step where we transition
the application to the tenant context. This is done using the tenancy()-
>initialize() method, which calls the registered tenancy bootstrappers.

On the next page, you can see a schematic summarizing the tenancy logic that takes place as
part of routing. It also includes a visualization of early identification, but going forward we are
not going to cover it in too much depth. I’d highly recommend taking the time to read the Early
identification page of the documentation to better understand some edge cases with Laravel’s
routing.

For an in-depth look at how the routing works in some edge cases, take a look at the Universal
routes and Early identification pages of the package documentation.

Now that we got how the package works out of the way, we can talk about the things you bought
this book for: production considerations, best practices, common pitfalls, security, and more.

An interesting detail is that this listener runs the bootstrappers in reverse order. Since bootstrappers can
depend on each other - based on the order they’re defined in - they should also be reverted in an order that takes
these dependencies into account.

14

Route::get(¢/foo/bar’, ‘FooController@bar’) HTTP ReguesT

“ . class FooController extends Controller
LARAVEL ROUTING t

GLOBAL MIDDLEWARE STACK public function __construct()

{
¥

$this->middleware(AdditionalMW: :class);

public function bar()

{
// queries tenant database
RoUTE MIDDLEWARE STACK return User::first()->name;
TENANCY MIDDLEWARE

Simplified version of InitializeTenancyByDomain
TENANT CONTEXT

$this->tenancy->initialize(
$this->resolver->resolve($domain) ;

13

Tenancy Service container singleton

L > public function initialize(Tenant $tenant)

RESOLVER Simplified DomainTenantResolver // $bootstrappers—>bootstrap();

public function resolve($domain): Tenant &——
{

return Tenant: :whereHas (public function end()
‘domain’, {
fn ($query) => $query->where(‘domain’, $domain);
Y->first(); 13

// $bootstrappers->revert();

EARLY IDENTIFICATION See documentation for in-depth details

BOOTSTRAPPERS Registered in config(‘tenancy.bootstrappers?)
When the tenancy middleware is included in the global middleware stack, it runs at

interface TenancyBootstrapper *1, meaning when *2 is reached, it’s already in the tenant context.

{

public function bootstrap(Tenant $tenant): void; Alternatively, when the controller doesn’t extend Controller, or does implement
HasMiddleware, it runs entirely (including the constructor) in the tenant context
public function revert(): void; even if the tenancy middleware is not in the global middleware stack.

	Introduction
	Terminology recap
	Multi-tenancy vs multi-instance

	How the package works
	Tenants
	Default Tenant model
	Configuring the model

	Tenant identification
	Middleware
	Resolvers
	Universal routes
	Early identification

	Tenancy initialization
	Tenancy bootstrappers

	Creating tenants
	TenancyServiceProvider

	Summary

	Picking the right setup for your application
	Single-database vs multi-database
	Tenant identification
	Domain/subdomain identification
	Path identification
	Header identification
	Origin header identification

	Summary

	General tips and best practices
	Using a single central domain
	Structuring your application to separate tenant and central application
	Branding considerations

	Security
	Tenant keys
	Frontend
	Sharing the tenant key
	Tenant-specific API keys

	Filesystem, path enumeration
	Database
	Authentication

	Session scoping

	Deploying: multi-database migrations
	A short dive into zero-downtime deployments
	Multi-database migrations
	Parallel migrations
	Tenant-specific maintenance mode
	Make your application usable even before the database has been migrated
	Distributing tenants across servers
	Differentiating between simple and complex migrations
	Separating high-availability code into a separate app

	Deploying: HTTPS certificates
	Cloudflare
	Nginx
	Ploi
	Caddy
	Reverse proxy on another server
	Using Caddy as a webserver
	Using Caddy as a reverse proxy on the same server
	Running Caddy in Docker

	Summary

	Integrating with third-party packages
	TenantConfig
	Singleton bindings
	Early identification
	Route cloning with path identification
	Adding Tenancy to an existing application

	Common features and pitfalls
	Identifying tenants using users & SSO-style authentication
	Distributing tenant databases across multiple servers
	Different features per tenant
	Code customizations
	The definitive guide to tenant-specific files and assets
	Browser assets
	File assets

	Accessing data from multiple tenant databases
	Aggregating data manually
	Cross-database queries
	Resource syncing
	Rethinking your database architecture

	Tenant-specific logic executed in a CLI context

	Deep dives
	Persistent PDO connections
	A very low level dive into session scoping
	What causes the "unauthenticated"

	JobPipeline

	When to use specialized features
	When to use resource syncing
	When to use PostgreSQL RLS

	Conclusion

